资源类型

期刊论文 228

年份

2023 22

2022 25

2021 25

2020 15

2019 10

2018 7

2017 12

2016 9

2015 17

2014 12

2013 10

2012 8

2011 9

2010 6

2009 5

2008 7

2007 5

2006 3

2005 3

2004 2

展开 ︾

关键词

吸附 2

熔态还原 2

Anderson 模型 1

CO2 加氢 1

Fe、Co、Ru 碳化物 1

IEEE80216 1

K 助剂 1

LK算法 1

LS算法 1

Mesh 1

Mn 助剂 1

Reed-Solomon码;步进式译码算法;超宽带;流水线架构 1

n 型碳纳米管 1

世界经济全 1

中国钢铁工业 1

二阶矩模型 1

井壁稳定 1

亚麻屑纤维素 1

产业 1

展开 ︾

检索范围:

排序: 展示方式:

Removing phosphorus from aqueous solutions by using iron-modified corn straw biochar

Fenglin LIU,Jiane ZUO,Tong CHI,Pei WANG,Bo YANG

《环境科学与工程前沿(英文)》 2015年 第9卷 第6期   页码 1066-1075 doi: 10.1007/s11783-015-0769-y

摘要: Iron-modified corn straw biochar was used as an adsorbent to remove phosphorus from agricultural runoff. When agricultural runoffs with a total phosphorus (TP) concentration of 1.86 mg·L to 2.47 mg·L were filtered at a hydraulic retention time of 2 h through a filtration column packed with the modified biochar, a TP removal efficiency of over 99% and an effluent TP concentration of less than 0.02 mg·L were achieved. The isotherms of the phosphorus adsorption by the modified biochar fitted the Freundlich equation better than the Langmuir equation. The mechanism of the phosphorus adsorbed by the modified biochar was analyzed by using various technologies, i.e. scanning electron microscopy (SEM), X-ray diffraction (XRD) analysis, X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). The results indicated that the surface of the modified biochar was covered by small iron granules, which were identified as Fe O . The results also showed that new iron oxides were formed on the surface of the modified biochar after the adsorption of phosphorus. Moreover, new bonds of Fe-O-P and P-C were found, which suggested that the new iron oxides tend to be Fe (PO ) (OH) . Aside from removing phosphorus, adding the modified biochar into soil also improved soil productivity. When the modified biochar-to-soil rate was 5%, the stem, root, and bean of broad bean plants demonstrated increased growth rates of 91%, 64%, and 165%, respectively.

关键词: iron-modified biochar     phosphorus removal     agricultural waste     agricultural runoff    

Insights into influence of aging processes on zero-valent iron modified biochar in copper(II) immobilization

《化学科学与工程前沿(英文)》 2023年 第17卷 第7期   页码 880-892 doi: 10.1007/s11705-022-2282-8

摘要: The zero-valent iron modified biochar materials are widely employed for heavy metals immobilization. However, these materials would be inevitably aged by natural forces after entering into the environment, while there are seldom studies reported the aging effects of zero-valent iron modified biochar. In this work, the hydrogen peroxide and hydrochloric acid solution were applied to simulate aging conditions of zero-valent iron modified biochar. According to the results, the adsorption capacity of copper(II) contaminants on biochar, zero-valent iron modified biochar-1, and zero-valent iron modified biochar-2 after aging was decreased by 15.36%, 22.65% and 23.26%, respectively. The surface interactions were assigned with chemisorption occurred on multi-molecular layers, which were proved by the pseudo-second-order and Langmuir models. After aging, the decreasing of capacity could be mainly attributed to the inhibition of ion-exchange and zero-valent iron oxidation. Moreover, the plant growth and soil leaching experiments also proved the effects of aging treatment, the zero-valent iron modified biochar reduced the inhibition of copper(II) bioavailability and increased the mobility of copper(II) after aging. All these results bridged the gaps between bio-adsorbents customization and their environmental behaviors during practical agro-industrial application.

关键词: zero-valent iron modified biochar     aging processes     copper removal     adsorption     pilot-scale experiments    

Effects of different types of biochar on the properties and reactivity of nano zero-valent iron in soil

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期 doi: 10.1007/s11783-021-1388-4

摘要:

• Biochar enhanced the mobility and stability of zero-valent iron nanoparticles.

关键词: Nano zero-valent iron     Biochar     BDE209     Transport     Soil    

Sorption of phenanthrene to biochar modified by base

Zhengjun Feng, Lizhong Zhu

《环境科学与工程前沿(英文)》 2018年 第12卷 第2期 doi: 10.1007/s11783-017-0978-7

摘要: Biochar (BC) is a potential material for removal of polycyclic aromatic hydrocarbons from soil and water, and base modification is a promising method for improving its sorption ability. In this study, we synthesized a series of base-modified biochars, and evaluated their sorption of phenanthrene. Original biochars were produced by pyrolysis of three feedstocks (rice straw, wood and bamboo) at five temperatures (300°C, 350°C, 400°C, 500°C and 700°C). Base-modified biochars were further obtained by washing of biochars with base solution. The base soluble carbon (SC) was extracted from the supernatant, which were only obtained from biochars pyrolyzed at low temperatures (<500°C) and the content was decreased with the increase of pyrolysis temperature. The SC content between different feedstocks followed the trend of rice straw>wood>bamboo when same pyrolysis conditions were applied. It was found that base modification improved the sorption of phenanthrene on biochars that SC could be extracted from (extractable-BCs). However, base treatment but had limited effects for biochars that no SC could be extracted from. It suggested that base modification improved the sorption of phenanthrene to extractable-BCs by removing the SC and thus increasing the surface area and hydrophobicity. Therefore, base modification was suggested to be used in modifying extractable-BCs.

关键词: Biochar     Base modification     Phenanthrene    

Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene

Gaoling Wei, Jinhua Zhang, Jinqiu Luo, Huajian Xue, Deyin Huang, Zhiyang Cheng, Xinbai Jiang

《环境科学与工程前沿(英文)》 2019年 第13卷 第4期 doi: 10.1007/s11783-019-1142-3

摘要:

• Biochar supported nanoscale zero-valent iron composite (nZVI/BC) was synthesized.

• nZVI/BC quickly and efficiently removed nitrobenzene (NB) in solution.

• NB removal by nZVI/BC involves simultaneous adsorption and reduction mechanism.

• nZVI/BC exhibited better catalytic activity, stability and durability than nZVI.

关键词: Biochar     Nanoscale zero-valent iron     Nitrobenzene     Reduction     Adsorption     Synergistic effec    

Immobilization of NZVI in polydopamine surface-modified biochar for adsorption and degradation of tetracycline

Xiangyu Wang, Weitao Lian, Xin Sun, Jun Ma, Ping Ning

《环境科学与工程前沿(英文)》 2018年 第12卷 第4期 doi: 10.1007/s11783-018-1066-3

摘要:

Novel method for polydopamine (PDA) modified biochar (BC) with immobilized NZVI.

PDA/NZVI@BC exhibits significantly enhanced activity for tetracycline (TC) removal.

TC removal efficiency was increased by 55.9% compared with that of pristine NZVI.

The mechanism of tetracycline removal by PDA/NZVI@BC was proposed.

关键词: Biochar     Polydopamine     NZVI     Modification     Tetracycline    

生物质制备纳米零价铁生物炭的铁相转移和原位还原机制 Article

卓胜男, 任宏宇, 谢国俊, 邢德峰, 刘冰峰

《工程(英文)》 2023年 第21卷 第2期   页码 124-134 doi: 10.1016/j.eng.2021.07.012

摘要:

纳米零价铁生物炭(nZVI-BC)作为一种由废弃生物质制备的环境友好型材料,可有效解决生物质转化和环境污染问题。然而,复杂的生物质/生物炭改性过程阻碍了它们的进一步生产和应用。在本研究中,一种绿色溶剂聚乙二醇400(PEG400)被引入FeCl3⋅6H2O改性水稻秸秆(RS)的反应体系中,改性后的RS通过一步热解法被转化为nZVI-BC。PEG400 的添加促进了铁离子的水解并改善了RS的表面结构,有利于Fe2O3附着到RS表面。在60 ℃、80 ℃、100 ℃和0.5 h 的改性条件下,RS中木质素组分损失不多,有利于高温热解过程中碳骨架的形成。Fe2O3在热解产生的还原气体和无定形碳的帮助下被还原,最终形成nZVI-BC。将该方法制备的nZVI-BC 用于染料刚果红的催化高级氧化去除,结果表明,nZVI-BC 具有快速的吸附能力(5 min 时吸附效果为70.6%)和高效的催化降解能力(60 min 时催化降解90%)。本研究为nZVI-BC的制备提供了一种新的策略,为其规模化生产和应用奠定了基础。

关键词: 生物质转化     纳米零价铁生物炭     原位热解     铁相转移    

Modified iron-molybdate catalysts with various metal oxides by a mechanochemical method: enhanced formaldehyde

Xue Liu, Lingtao Kong, Shengtao Xu, Chaofan Liu, Fengyun Ma

《化学科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 1099-1110 doi: 10.1007/s11705-020-2008-8

摘要: A mechanochemical method was employed to prepare modified iron molybdate catalysts with various metal salts as precursors. The physicochemical properties of the iron molybdate catalysts were characterized, and their performances in catalyzing the reaction from methanol to formaldehyde (HCHO) were evaluated. Iron molybdate catalysts doped with Co(NO ) ·6H O and Al(NO ) ·9H O resulted in high HCHO yields. Compared with a commercial catalyst, the HCHO yields in the reaction with the modified catalyst at an optimal Co/Mo molar ratio reached 97.37%. According to chemical state analysis, the formation of CoO and the efficient decrease in the MoO sublimation rate could be important factors enhancing the HCHO yield in reactions catalyzed with iron molybdate doped with different Co/Mo mole ratios.

关键词: iron molybdate catalyst     metal oxides     methanol to formaldehyde     Co/Mo ratio     formaldehyde yield    

Cattle manure biochar and earthworm interactively affected CO and NO emissions in agricultural and forest

《环境科学与工程前沿(英文)》 2022年 第16卷 第3期 doi: 10.1007/s11783-021-1473-8

摘要:

• Earthworms increase CO2 and N2O emissions in agricultural and forest soil.

关键词: Carbon sequestration     Forest soil     Cattle manure biochar     Greenhouse gas emissions     Soil fauna    

Enhancing the adsorption function of biochar by mechanochemical graphitization for organic pollutant

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1418-2

摘要:

• Mechanochemical treatment reduced the calcination temperature for biochar synthesis.

关键词: Biochar     Mechanochemical treatment     Graphitization     Calcination temperature     Organic pollutant    

Non-thermal plasma enhances performances of biochar in wastewater treatment and energy storage applications

《化学科学与工程前沿(英文)》 2022年 第16卷 第4期   页码 475-483 doi: 10.1007/s11705-021-2070-x

摘要: Surface functionalization or modification to introduce more oxygen-containing functional groups to biochar is an effective strategy for tuning the physicochemical properties and promoting follow-up applications. In this study, non-thermal plasma was applied for biochar surface carving before being used in contaminant removal and energy storage applications. The results showed that even a low dose of plasma exposure could introduce a high number density of oxygen-functional groups and enhance the hydrophilicity and metal affinity of the pristine biochar. The plasma-treated biochar enabled a faster metal-adsorption rate and a 40% higher maximum adsorption capacity of heavy metal ion Pb2+. Moreover, to add more functionality to biochar surface, biochar with and without plasma pre-treatment was activated by KOH at a temperature of 800 °C. Using the same amount of KOH, the plasma treatment resulted in an activated carbon product with the larger BET surface area and pore volume. The performance of the treated activated carbon as a supercapacitor electrode was also substantially improved by>30%. This study may provide guidelines for enhancing the surface functionality and application performances of biochar using non-thermal-based techniques.

关键词: non-thermal plasma     surface functionalization     biochar modification     wastewater treatment     supercapacitor    

Selective preparation for biofuels and high value chemicals based on biochar catalysts

《能源前沿(英文)》 2023年 第17卷 第5期   页码 635-653 doi: 10.1007/s11708-023-0878-4

摘要: The reuse of biomass wastes is crucial toward today’s energy and environmental crisis, among which, biomass-based biochar as catalysts for biofuel and high value chemical production is one of the most clean and economical solutions. In this paper, the recent advances in biofuels and high chemicals for selective production based on biochar catalysts from different biomass wastes are critically summarized. The topics mainly include the modification of biochar catalysts, the preparation of energy products, and the mechanisms of other high-value products. Suitable biochar catalysts can enhance the yield of biofuels and higher-value chemicals. Especially, the feedstock and reaction conditions of biochar catalyst, which affect the efficiency of energy products, have been the focus of recent attentions. Mechanism studies based on biochar catalysts will be helpful to the controlled products. Therefore, the design and advancement of the biochar catalyst based on mechanism research will be beneficial to increase biofuels and the conversion efficiency of chemicals into biomass. The advanced design of biochar catalysts and optimization of operational conditions based on the biomass properties are vital for the selective production of high-value chemicals and biofuels. This paper identifies the latest preparation for energy products and other high-value chemicals based on biochar catalysts progresses and offers insights into improving the yield of high selectivity for products as well as the high recyclability and low toxicity to the environment in future applications.

关键词: biomass     biochar catalysts     biofuels     high chemicals    

Adsorption of herring sperm DNA onto pine sawdust biochar: Thermodynamics and site energy distribution

《环境科学与工程前沿(英文)》 2022年 第16卷 第11期 doi: 10.1007/s11783-022-1579-7

摘要:

● Adsorption of environmental deoxyribonucleic acid on biochar was studied.

关键词: Environmental deoxyribonucleic acid     Antibiotic resistance genes     Biochar     Adsorption thermodynamics    

Erratum to: Synthesis of vinasse-dolomite nanocomposite biochar via a novel developed functionalization

《环境科学与工程前沿(英文)》 2021年 第15卷 第5期 doi: 10.1007/s11783-021-1387-5

A “Seawater-in-Sludge” approach for capacitive biochar production via the alkaline and alkaline earth

Xiling Li, Tianwei Hao, Yuxin Tang, Guanghao Chen

《环境科学与工程前沿(英文)》 2021年 第15卷 第1期 doi: 10.1007/s11783-020-1295-0

摘要: Abstract • Capacitive biochar was produced from sewage sludge. • Seawater was proved to be an alternative activation agent. • Minerals vaporization increased the surface area of biochar. • Molten salts acted as natural templates for the development of porous structure. Sewage sludge is a potential precursor for biochar production, but its effective utilization involves costly activation steps. To modify biochar properties while ensuring cost-effectiveness, we examined the feasibility of using seawater as an agent to activate biochar produced from sewage sludge. In our proof-of-concept study, seawater was proven to be an effective activation agent for biochar production, achieving a surface area of 480.3 m2/g with hierarchical porosity distribution. Benefited from our design, the catalytic effect of seawater increased not only the surface area but also the graphitization degree of biochar when comparing the pyrolysis of sewage sludge without seawater. This leads to seawater activated biochar electrodes with lower resistance, higher capacitance of 113.9 F/g comparing with control groups without seawater. Leveraging the global increase in the salinity of groundwater, especially in coastal areas, these findings provide an opportunity for recovering a valuable carbon resource from sludge.

关键词: Sewage sludge     Biochar     Seawater     Recourse recovery     Capacitor    

标题 作者 时间 类型 操作

Removing phosphorus from aqueous solutions by using iron-modified corn straw biochar

Fenglin LIU,Jiane ZUO,Tong CHI,Pei WANG,Bo YANG

期刊论文

Insights into influence of aging processes on zero-valent iron modified biochar in copper(II) immobilization

期刊论文

Effects of different types of biochar on the properties and reactivity of nano zero-valent iron in soil

期刊论文

Sorption of phenanthrene to biochar modified by base

Zhengjun Feng, Lizhong Zhu

期刊论文

Nanoscale zero-valent iron supported on biochar for the highly efficient removal of nitrobenzene

Gaoling Wei, Jinhua Zhang, Jinqiu Luo, Huajian Xue, Deyin Huang, Zhiyang Cheng, Xinbai Jiang

期刊论文

Immobilization of NZVI in polydopamine surface-modified biochar for adsorption and degradation of tetracycline

Xiangyu Wang, Weitao Lian, Xin Sun, Jun Ma, Ping Ning

期刊论文

生物质制备纳米零价铁生物炭的铁相转移和原位还原机制

卓胜男, 任宏宇, 谢国俊, 邢德峰, 刘冰峰

期刊论文

Modified iron-molybdate catalysts with various metal oxides by a mechanochemical method: enhanced formaldehyde

Xue Liu, Lingtao Kong, Shengtao Xu, Chaofan Liu, Fengyun Ma

期刊论文

Cattle manure biochar and earthworm interactively affected CO and NO emissions in agricultural and forest

期刊论文

Enhancing the adsorption function of biochar by mechanochemical graphitization for organic pollutant

期刊论文

Non-thermal plasma enhances performances of biochar in wastewater treatment and energy storage applications

期刊论文

Selective preparation for biofuels and high value chemicals based on biochar catalysts

期刊论文

Adsorption of herring sperm DNA onto pine sawdust biochar: Thermodynamics and site energy distribution

期刊论文

Erratum to: Synthesis of vinasse-dolomite nanocomposite biochar via a novel developed functionalization

期刊论文

A “Seawater-in-Sludge” approach for capacitive biochar production via the alkaline and alkaline earth

Xiling Li, Tianwei Hao, Yuxin Tang, Guanghao Chen

期刊论文